terça-feira, 31 de março de 2020


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Na físicateoria de campo de Liouville, ou simplesmente (teoria de Liouville) é uma teoria quântica de campos bidimensional cuja equação clássica de movimento se assemelha a equação diferencial não-linear de segunda ordem de Joseph Liouville a que aparece no problema geométrico clássico de uniformização de superfícies de Riemann.
A teoria de campo é definida pela ação local:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde  é a métrica do espaço bidimensional em que a teoria de campo é formulada,  é o escalar Ricci de tal espaço, e  é um acoplamento constante real. O campo  é consequentemente chamado de campo Liouville.
A equação de movimento associado a esta ação é ::
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



é o operador de d'Alembert nesse espaço. No caso, a métrica do espaço sendo a métrica Euclidiana e utilizando a notação padrão, torna-se a equação clássica de Liouville.
[1]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 




RELATIVIDADE SDCTIE GRACELI EM:


teoria de Chern-Simons, nomeada em homenagem a Shiing-Shen Chern e James Harris Simons, é uma teoria de campo quântico topológico tridimensional do tipo Schwarz, desenvolvida por Edward Witten.[1] É assim chamado porque sua ação é proporcional à integral da forma 3 de Chern-Simons.[2][3]

A teoria clássica[editar | editar código-fonte]

Origem matemática[editar | editar código-fonte]

Na década de 1940, S. S. Chern e A. Weil estudaram as propriedades globais de curvatura de variedades lisas M como co-homologia de Rham (teoria de Chern-Weil), que é um passo importante na teoria de classes características em geometria diferencial.

Dado um fibrado G-principal plano P em M, existe um homomorfismo único, chamado homomorfismo de Chern-Weil, da álgebra de polinômios invariantes aditivos G em g (álgebra de Lie de G) à co-homologia .[4] Se o polinômio invariante for homogêneo, pode-se escrever concretamente qualquer forma k da conexão fechada ω como forma 2k da forma de curvatura associada Ω de ω.
Em 1974, S. S. Chern e J. H. Simons construíram concretamente uma forma (2k-1) df(ω) tal que
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde T é o homomorfismo Chern-Weil. Esta forma é chamada de forma de Chern-Simons. Se df(ω) estiver fechado, pode-se integrar a fórmula acima
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde C é um ciclo bidimensional (2k-1) em M. Esse invariante é chamado invariante de Chern-Simons. O invariante de Chern-Simons (M) é o termo de fronteira que não pode ser determinado por nenhuma formulação combinatória pura. Também pode ser definido como
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde  é o primeiro número de Pontryagin e s(M) é a seção do feixe ortogonal normal P. Além disso, o termo Chern-Simons é descrito como o eta invariante definido por Atiyah, Patodi e Singer.
A invariância do medidor e a invariância métrica podem ser vistas como a invariância sob a ação do grupo de Lie adjacente na teoria de Chern-Weil. A integral de ação (integral do caminho) da teoria de campo na física é vista como a integral lagrangiana da forma de Chern-Simons e do loop de Wilson, holonomia do conjunto vetorial M. Isso explica por que a teoria de Chern-Simons está intimamente relacionada à teoria de campos topológicos.

Configurações[editar | editar código-fonte]

As teorias de Chern-Simons podem ser definidas em qualquer 3-variedade M topológica, com ou sem limite.[5] Como essas teorias são teorias topológicas do tipo Schwarz, nenhuma métrica precisa ser introduzida em M.
A teoria de Chern-Simons é uma teoria de calibre, o que significa que uma configuração clássica na teoria de Chern-Simons em M com o grupo de calibre G é descrita por um pacote G principal on M. A conexão deste fibrado é caracterizado por uma conexão de forma única A, valorizada na álgebra de Lie g do grupo de Lie G.Em geral, a conexão A é definida apenas em fragmentos de coordenadas individuais, e os valores de A em fragmentos diferentes são relacionados por mapas conhecidos como transformações de gauge. Estes são caracterizados pela afirmação de que a derivada covariante, que é a soma do operador de derivada externa d e a conexão A, se transforma na representação adjunta do grupo de calibre G. O quadrado da derivada covariante consigo mesmo pode ser interpretado como uma forma bidimensional F com valor g chamada forma de curvatura ou força de campo. Também se transforma na representação adjunta.

Dinâmica[editar | editar código-fonte]

A ação S da teoria de Chern-Simons é proporcional à integral da forma tridimensional de Chern-Simons[6]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



A constante k é chamada de nível da teoria. A física clássica da teoria de Chern-Simons é independente da escolha do nível k.
Classicamente, o sistema é caracterizado por suas equações de movimento, que são os extremos da ação em relação às variações do campo A. Em termos da curvatura do campo
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


equação de campo é explicitamente
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



As equações clássicas de movimento são, portanto, satisfeitas se, e somente se, a curvatura desaparecer em todos os lugares; nesse caso, a conexão é considerada plana. Assim, as soluções clássicas da teoria de G Chern-Simons são as conexões planas dos principais fibrados G on M. As conexões planas são determinadas inteiramente por holonomias em torno de ciclos incontratáveis na base M. Mais precisamente, elas estão em correspondência individual com classes de equivalência de homomorfismos do grupo fundamental de M ao grupo de medida G até a conjugação.
Se M tem um limite N, existem dados adicionais que descrevem uma escolha de trivialização do pacote G principal em N. Essa escolha caracteriza um mapa de N a G. A dinâmica desse mapa é descrita por modelo de Wess-Zumino-Witten (WZW) em N no nível k.


RELATIVIDADE SDCTIE GRACELI EM:


Termodinâmica e mecânica quântica[editar | editar código-fonte]



A mecânica quântica surgiu da incapacidade conjunta da termodinâmica e do eletromagnetismo clássicos de prever a correta distribuição de energias em função da frequência no problema da radiação de corpo negro.
A tentativa de derivação feita por Lord Rayleigh e por James Jeans postulava que cada onda eletromagnética estava em equilíbrio com as paredes do forno. Isso se traduz num teorema que mantém sua validade mesmo na mecânica quântica:
Numa cavidade fechada em equilíbrio térmico com o campo eletromagnético confinado, o campo é equivalente a um conjunto enumeravelmente infinito de osciladores harmônicos, e a sua energia é igual à soma das energias desses osciladores. Cada frequência corresponde aos osciladores tomados dois a dois.
Max Planck obteve a forma correta da distribuição porque postulou a quantização da energia dos osciladores harmônicos que comporiam as paredes da cavidade que confina a radiação. Essa hipótese teve por efeito introduzir um limite máximo de freqüência acima do qual há um corte (cutoff) nas contribuições dos entes (ondas eletromagnéticas) que estão em equilíbrio.
Einstein, para explicar o efeito fotoelétrico, ampliou o conceito da quantização para a energia radiante, postulando a existência do fóton (o que "implicitamente" quer dizer que as equações de Maxwell não tem validade ilimitada, porque a existência do fóton implica não-linearidades).
A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):
A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções  são funções das coordenadas espaciais e do tempo.
Quando o potencial  não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis  e .
A equação que a parte espacial da função de onda  obedece é:
conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).

Formulação matemática[editar | editar código-fonte]

Mecânica clássica e mecânica quântica[editar | editar código-fonte]

A dinâmica de uma partícula pontual de massa  em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana [6][7] 
,
em que  (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e  é o potencial em que a partícula se move. Minimizando o funcional ação

encontra-se a equação de movimento para esse sistema,
,
que é a equação de Newton, desde que 
Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento  
,
de maneira que a função hamiltoniana é dada por
,
que para a escolha da lagrangiana acima, tem-se
.
Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de  tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton 
,
e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,

onde o parêntese de Poisson é definido como
.
Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
,
onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
.
Um aspecto importante a ser observado é que os operadores  e  podem ser representados como os operadores diferencias

de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função 
,

Teoria Clássica de Campos[editar | editar código-fonte]

A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com  graus de liberdade, que consiste de  partículas pontuais de massa , separadas por uma distância  e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
.
Esse sistema pode ser estendido facilmente para o limite em que  e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
,
onde  representa o deslocamento da partícula relativa a posição  no instante de tempo . Também, define-se as quantidades  .
Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que  e das derivadas , dessa maneira, o funcional ação pode ser escrito como
.
Finalmente, a lagrangiana pode ser escrita como
,
onde , é conhecida como densidade lagrangiana [9]. A equação de Euler-Lagrange é:
.

Primeiras unificações. Equações relativísticas[editar | editar código-fonte]


Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:Equação de Klein-Gordon
[editar | editar código-fonte]

onde
A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
Usando-se a definição relativística de energia
chega-se à equação:
Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.

Equação de Dirac[editar | editar código-fonte]

Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
  1. A equação deveria ser linear na derivada temporal;
  2. A equação deveria ser relativisticamente covariante.
A equação obtida por ele tinha a seguinte forma:
onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma
e as matrizes  e  devem ser hermitianas.
A equação de Dirac, diferentemente da equação de Klein-Gordon, é uma equação que dá bons resultados para partículas de spin ½. Aliás, um dos sucessos é que esta equação incorpora o spin de forma natural, o que não ocorre com a equação de Schrondinger, onde o spin é admitido posteriormente como uma hipótese ad hoc. Não obstante, isso levou certos autores a afirmarem que o spin é um grau de liberdade relativístico, o que é contestado. Outro sucesso da equação de Dirac foi prever a existencia do pósitron, já que a equação previa valores negativos de energia, o que foi inicialmente interpretado, à luz da [[teoria dos buracos], como indicação de elétrons com energias negativas. Essa teoria afirmava que os pósitrons seriam vacâncias produzidas pela promoção desses elétrons para estados com energias positivas. O vácuo é então visto como um mar de elétrons onde eles estariam compactamente colocados. Hoje, entretanto, essa teoria cedeu lugar à questão de criação e aniquilação de partículas num contexto mais geral da quantização canônica dos campos.

Desenvolvimento da teoria quântica dos campos[editar | editar código-fonte]

A origem da teoria quântica dos campos é marcada pelos estudos de Max Born e Pascual Jordan em 1925 sobre o problema da computação da potência irradiada de um átomo em uma transição energética.
Em 1926, Born, Jordan e Werner Heisenberg formularam a teoria quântica do campo eletromagnético desprezando tanto a polarização como a presença de fontes, levando ao que se chama hoje de uma teoria do campo livre. Para tanto, usaram o procedimento da quantização canônica.
Três razões principais motivaram o desenvolvimento da teoria quântica dos campos:
  • A necessidade da uma teoria que lidasse com a variação do número de partículas;
  • A necessidade de conciliação entre as duas teorias: mecânica quântica e a relatividade;
  • A necessidade de lidar com estatísticas de sistemas multipartículas.

Quantização canônica dos campos[editar | editar código-fonte]

Um campo, no esquema conceitual da teoria dos campos, é uma entidade com infinitos graus de liberdade.
O estado de mais baixa energia, chamado de vácuo, corresponde à ausência de partículas.
Estas, entretanto, podem ser criadas ou destruídas através de dois operadores:
  • : operador criação
  • : operador aniquilação
que agem sobre a função de onda do campo, respectivamente simbolizando a criação e a aniquilação de partículas dotadas de momento , possibilidade exigida pela relatividade.
Os operadores, agindo sobre os estados de um tipo específico de espaço de Hilbert, chamado espaço de Fock, criam e destroem as partículas. Entretanto, uma restrição é:
o que quer dizer que não pode haver aniquilação sobre o estado básico, já que nesse caso não há partículas a serem aniquiladas.




X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS